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Abstract The effectiveness of any given mapping of workload to processors in a parallel system is 
dependent on the stochastic behavior of the workload. Program behavior is often characterized by a 
sequence of phases, with phase changes occurring unpredictably. During a phase, the behavior is fairly 
stable, but may become quite different during the next phase. Thus a workload assignment generated 
for one phase may hinder performance during the next phase. We consider the problem of deciding 
whether to remap a parallel computation in the face of uncertainity in remapping's utility. Fundamen- 
tally, it is necessary to balance the expected remapping performance gain against the delay cost of 
remapping. This paper treats this problem formally by constructing a probabilistic model of a computa- 
tion with at most two phases. We use stochastic dynamic programming to show that the remapping 
decision policy which minimizes the expected running time of the computation has an extremely sim- 
ple structure: the optimal decision at any step is followed by comparing the probability of remapping 
gain against a threshold. This theoretical result stresses the importance of detecting a phase change, and 
assessing the possibility of gain from remapping. We also empirically study the sensitivity of optimal 
performance to imprecise decision thresholds. Under a wide range of model parameter values, we find 
nearly optimal performance if remapping is chosen simply when the gain probability is high. These 
results strongly suggest that except in extreme cases, the remapping decision problem is essentially that 
of dynamically determining whether gain can be achieved by remapping after a phase change; precise 
quantification of the decision model parameters is not necessary. 
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Contracts NAS1-17070 and NAS1-18107 while the first author was in residence at ICASE, Mail Stop 132C, 
NASA Langley Research Center, Hampton, VA 23665. It was also supported in part by the Virginia Center for 
Innovative Technology, while both authors were in residence at the University of Virginia, Department of Com- 
puter Science, Thornton Hall, Charlottesville, VA 22903. 
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1. Introduction 

An important issue in parallel processing is the assignment of workload to processors. A common 

model of this problem is to assume that a program is composed of a number of communicating 

modules, and that each module is to be assigned to a processor in the target parallel system. The 

assignment algorithm takes a global view of the system, and must consider processors’ capacity, any 

special affinity a module has for a processor (e.g. a module may require assignment to a processor with 

a floating point accelerator), module execution requirements, inter-module communication, and any 

access to files and data structures that a module may require. The assignment algorithm may simultane- 

ously assign files to different storage devices, so we will speak of the mapping of the computation, 

rather than just the module assignment. Any reasonable mapping algorithm must take into account the 

expected behavior of the mapped computation, because the efficiency of a parallel computation depends 

heavily on how well its mapping both exploits available parallelism, and minimizes the communication 

and synchronization overhead. Both of these factors are determined by the underlying stochastic 

behavior of the computation. If during run-time the anticipated behavior changes and causes a 

mismatch between mapping and behavior, performance will deteriorate. In this case, it can be desirable 

to dynamically remap the computation. Because of the complicated considerations often involved in 

task and file assignment, it may not be feasible to allow processors to move modules, files, and data 

structures around in a dynamic decentralized fashion. A global mapping (or remapping) algorithm is 

better able to consider all aspects of the assignment problem, especially if the parallel system is tightly 

coupled. 

Another type of workload assignment is sometimes employed for parallel scientific computations. 

These computations are often composed of numerical calculations at each point in a discretized spatial 

(or transformed) domain. Workload assignment in this context involves partitioning the discretized 

domain points into regions which are then mapped to processors [2]; usually the number of regions 
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equals the number of processors. A processor’s workload is then a function of the domain points in the 

region it receives. While the region partitioning is usually concerned with balancing the execution 

workload in each region, the assignment of regions to processors is mostly concerned with the com- 

munication costs incurred by the assignment. To dynamically remap the computation, we repartition the 

problem domain and assign the resulting regions to processors. Remapping might be desired if the 

number of domain points in a processor’s region changes, or if the calculaions required at the domain 

points change. A good example of this phenomenon is the behavior of shock-capturing techniques in 

computational gas dynamics [4]; the behavior change occurs when a shock develops and the numerical 

technique attempts to resolve the shock features with additional grid points. Since the domain was ori- 

ginally partitioned by physical region, the additional grid points can create a workload imbalance which 

leads to a performance decline. Many other numerical techniques adaptively change the grid in 

response to solution behavior and may thus exhibit phase-like behavior, for examples see [l]. 

In both of the fore-mentioned types of computation, w e a n  expect run-time behavior to change 

unexpectedly, and to the detriment of run-time performance. Dynamic remapping might improve per- 

formance, but remapping raises a number of issues including (1) whether to use global remapping or 

decentralized and localized remapping, (2) determining that a phase change leading to potential perfor- 

mance gain has occurred, (3) determining a new mapping and its implementation, (4) determining the 

gains and costs of remapping, (5) determining the performance loss of not remapping after a phase 

change, and (6) optimally chosing when to remap. This paper treats only the latter issue, which must 

essentially balance all costs, gains, and uncertainities involved in the decision to remap. All of the 

other issues are likely to be problem and system dependent, and are interesting research issues in their 

own right. We focus on the remapping decision problem because it brings whatever solutions are 

found for all of the other issues (aside from (1)) together in a cohesive bundle. We are furthermore 

motivated to treat the decision problem mathematically, because a mathematical model can attempt to 

abstract the salient features of many diverse remapping situations. Furthermore, our model allows us 
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identify an optimal remapping decision policy for a two-phase model. Optimal model performance 

gives us a baseline we use to study the sensitivity of model performance to the non-estimation of 

remapping’s costs and gains. The somewhat surprising conclusion of our sensitivity study is that for 

the purposes of deciding when to remap, the issues of estimating remapping’s gains and losses are 

often not issues at all. Careful use of a formal decision model in real situations would require careful 

estimation of quantities which are difficult to predict a priori, e.g. post phase change performance 

degradation, post remapping performance gain, and gain detection accuracy. Our empirical study shows 

that our model achieves nearly optimal performance by simply remapping when the likelihood of 

achieving better performance after remapping is high. This implies that careful estimation of major 

decision model parameters is not necessary. We also show that this decision heuristic is effective when 

the number of phase changes is not limited to two. Of course, the applicability of this result to real 

remapping situations depends on the degree to which the situation matches the model; nevertheless, the 

result suggests that the dynamic remapping decision problem is manageable. 

We have argued that some computations can benefit from dynamic global remapping. Most of 

the related literature does not address this particular problem. The work reported in [6], [7], [SI, and 

[25] essentially presumes that jobs amve at a central dispatcher which assigns jobs to processors. Our 

problem eschews the job amval model, and does not allow a dynamic routing mechanism. A more 

recent body of work including [8], [13], [22], [23], [26] allows decentralized assignment decisions to 

be made dynamically. Again, our problem presumes that incremental dynamic reassignment is not 

feasible. Static and dynamic task assignment algorithms are presented in [2], [3], [51, [lo], [ l l l ,  [121, 

[17], [24]. The dynamic assignment algorithms consider restricted classes of computations; the static 

assignment algorithms might be used in conjunction with a remapping decision policy if the statically 

assigned computations abruptly change behavior. In [16] we treat dynamic remapping of parallel com- 

putations whose behaviors change constantly, and gradually; we focus here on behavior which changes 

radically, and abruptly. This paper is an extension of earlier treatments of this problem in [14] and 
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[15]. Our approach is a variation on aspects of the broad treatment of change detection under uncer- 

tainty given in [ 181. Our model modifies this analysis by using a different decision cost structure, and 

by assuming a random computation duration. Our two main contributions are (1) to apply Markov 

decision theory to the performance issue of when to reconfigure a workload distribution in a parallel 

processing environment; (2) to show empirically that nearly optimal performance can be achieved 

without quantifying important decision model parameters. 

Section 2 describes the decision model we study, and identifies important functions related to the 

remapping problem. Section 3 discusses the optimal decision policy, showing that it is a threshold pol- 

icy. The calculation and behavior of the optimal thresholds is also discussed. Section 4 reports the 

results of an empirical study which examined the relative performance of fixed-threshold decision 

heuristics. Section 5 presents our conclusions, and the Appendix treats analytic issues in detail. 

2. Problem Model 

Our application of decision process theory requires that we identify a sequence of decision points 

in time where the decision is made whether to remap. Accordingly, we assume that the computation 

of interest gives rise to a natural sequence of decision points. For example, the end of an iteration in 

an iterative numerical program is a natural decision point. Likewise, natural decision points could be 

found in an embedded real-time system which periodically calls monitoring tasks. We define a cycle to 

be the amount of computation performed between two decision points. The time required by the system 

to execute a cycle, a cycle time, is assumed to be random. While we could allow the mean cycle time 

to depend on the decision points defining the cycle, for simplicity we will assume that mean cycle 

times during a phase are identical. We do not assume that cycle time distributions are independent, nor 

identically distributed. Also for simplicity’s sake we assume that at most one phase change will occur 

during the course of the computation. We let I?F be the mean cycle time achieved during the first 

nhachp :- thhp -nnn mrr ln  timp m-himwd Qftpr thP nhnw chanop hiit while the original mapping iS in y i i w ~  LO ULU LIIUCUI V J  VIV ~i i i iv  u v a - y  v vu --- y----- - -- . . ---- 
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place. Performance declines after the phase change if eB > eF eR is the mean cycle time during the 

second phase, after a remapping. We implicitly assume that eR < eB, but make no assumptions regard- 

ing the relationship between eR and eF 

A natural way of measuring the amount of work performed by the computation is to enumerate 

the number of cycles executed. We let N denote this quantity, and allow N to be random. We also 

assume that N is bounded from above by a constant M, and that N has a decreasing failure rate func- 

tion. The usefulness of this latter assumption is buried deeply in the proof of Lemma 1. Here we will 

simply state that a decreasing failure rate means that the quotient 

Prob(N = n} 
Prob(N m ) 

is an increasing function of n. This intuitively means that the longer the computation continues, the 

more likely it is that termination occurs at the present cycle. 

Our decision model describes two types of uncertainity in the remapping problem. We cannot be 

sure when (or if) we can gain better performance by remapping. This uncertainity is modeled by 

presuming that the occurrence of a phase change leading to potential remapping gain is random; the 

probability distribution of the cycle during which this occurs is assumed to have a constant failure rate 

@. The second source of uncertainity is related, but is perhaps more subtle. At a decision point we 

will employ some (problem dependent) mechanism to test for remapping gain. This mechanism might 

look for a decline in processor utilizations, or it might be able to examine what code has recently been 

executed. Based on such examinations, the mechanism can give us some indication of whether a new 

mapping is called for, but we cannot be certain that the mechanism is absolutely reliable. It might 

prematurely report the possibility of gain, or it might fail to report an existing possibility of gain. This 

type of uncertainty is modeled by assuming that every invocation of the mechanism has a probability a 

of prematurely reporting possible gain, and a probability p of failing to existing possible gain. 
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At every decision point in the computation, a decision policy decides whether to remap. The 

decision algorithm will consult the gain testing mechanism described above, but is distinct from that 

mechanism. The decision to remap is based on a gain probability which is calculated as a function of 

the response received from the gain testing mechanism. The probability is initially zero; if the first 

gain test detects no possibility for gain, we have evidence that there is no immediate gain from remap- 

ping. But the probability of remapping gain can no longer be zero since it is possible for a phase 

change to have occurred during the first cycle, and it is possible for remapping gain to be achieved, 

and it is possible that the test mechanism failed to detect the potential gain. The true value of the gain 

probability in this case depends on the values of @ and p. Similar observations hold if potential gain is 

reported. Bayes' Theorem [21] gives us a mechanism for calculating this probability. In general, let pn 

be the probability of remapping gain calculated at the nrh decision point. Initially, p 1  = 0. Supposing 

that pn-l = p ,  pn  is found by first calculating 

p*@) is interpreted as the probability that gain will be possible by step n, given that pn-l = p .  This pro- 

bability is calculated at step n-1, and so cannot consider the gain detection mechanism's report at step 

n. The value of pn depends on this report, and is calculated using Bayes' Theorem as follows. If 

potential gain is reported, pn is given by p"@): 

P*(P).(l - P> 
P * W O  - p, + ( 1  - p*(p>>.a.  

Pn = P"@> = 

Given a negative indication of potential gain, pn  is defined by p"(p): 

We will require one other related probability. Let qc(p) be the probability that the gain detection 

mechmism will report potential gain at step n, given that p2-! = p .  By conditioning on whether gain is 
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actually possible by step n, it is not difficult to see that 

4%) = P * W  - P) + (1 -P*(P))a.  (4) 

The probability of the mechanism reporting no gain at step n given pn-l = p  is simply 

A decision to remap incurs some explicit costs. First, there is a delay cost of calculating the 

remapping. We will furthermore suppose that after calculating the new mapping it is possible to com- 

pare its performance with that of the old mapping. If gain is possible from remapping, it will be found 

to be superior, it otherwise will not. This test can help us avoid an unnecessary and potentially costly 

implementation of the new mapping. We therefore let DT be the delay cost of calculating and testing a 

new mapping, and let DI be the delay cost of actually implementing that mapping. Table I summarizes 

our decision model definitions. 

Notation Definition 
n Decision Step Number 
N 
M Upper Bound on N 
Nn 

eF 
eB 
eR 
DT 
DI 
a 

Random number of decision steps 

N given N 1 n 

Decision Interval Pre-Gain Execution Time, Original Mapping 
Decision Interval Post-Gain Execution Time, Original Mapping 
Decision Interval Post-Gain Execution Time, New Mapping 
Delay to Calculate and Test New Mapping 
Delay to Implement New Mapping 
Gain Test False Alarm Error 
Gain Test Missed Gain Error 
Time of Gain Failure Rate Probability 
Pre-Observation Probability of Gain At Next Decision Step 
Posterior Probability of Gain After Positive Gain Observation 
Posterior Probability of Gain After Negative Gain Observation 
Probability of Observing Gain Next Observation 
Probability of Not Observing Gain Next Observation 

@n E[Nnl 

P 
4) 

p*(p) 
p"(p) 
p"@) 
qc@) 
qc(p) 

Table I 
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Every decision made by a remapping decision process incurs an explicit cost which reflects the 

expected cycle time of the cycle following the decision, and any remapping overhead costs. For exam- 

ple, if a phase change has occurred which allows remapping gain, but the old mapping is retained, then 

eB is the expected cycle time of the next cycle. If remapping is chosen, but no gain is yet possible, an 

overhead cost of DT is suffered, the absence of gain is discovered, and the old mapping is retained. If 

remapping is chosen when gain is achievable, then an overhead cost of D, + D, is suffered, but then 

every remaining cycle has a mean execution time of eR. The total computation execution time is the 

sum of all cycle times plus remapping overhead; an optimal decision policy minimizes the expectation 

of this sum. We see that the optimal decision policy should depend somehow on the various costs and 

gains involved in the remapping process, the remaining length of the computation, and the degree of 

our certainity that gain is possible. One way to express the inter-relationships between all of these con- 

cerns is as a stochastic dynamic programming problem. Given gain probability p at step n, let 

V(cp,n>) denote the expected remaining execution time of the computation if we use the optimal deci- 

sion policy. In the parlance of Markov decision processes [19], we are defining cp,n> to be the state of 

the process at step n, and V(<p,n>) to be the optimal (stationary) cost function. If we choose to retain 

the old mapping at step n, the next cycle's expected execution time is 

p*(p>eB + (1 - p*@))eF- 
Note that this expression anticipates the possibility that the next cycle will be the first during which 

gain is possible; in this case the next cycle's mean execution time is assumed to be eB. Let E,(<p,n>) 

be the expected remaining execution time after step n+l, using the optimal decision policy, given a 

gain probability p at step n and retention of the mapping at step n. Then the expected execution time 

remaining after step n, achieved by keeping the old mapping now and thereafter using the optimal 

decision policy is 

C,(<p,n>) = p*(p>eB + (1 - p * @ > ) s  + ~,(<p,m). (5)  

We call C, the retain cost function. We similarly define C,[<p,n>j, the remap cost function. 
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C,(q,n>) is the expected remaining execution time achieved by choosing to remap now, and 

thereafter using the optimal decision policy. By choosing to remap, we immediately incur an overhead 

cost D, If after testing the new mapping we find that gain is possible, then all remaining cycles have 

mean execution time eR. There are an expected number in - n + 1 of these cycles, where fin denotes 

the expected value of N given that N > n. Furthermore, we consider the decision process to have 

stopped at this point, because the single possible change has occurred. If the new mapping is found to 

be no better than the old, then the old mapping is retained, the next cycle has mean execution time 

p*(0)eE + (1 - p*(0))eF, the probability of gain is set to zero, and the decision process continues. Thus 

we see that 

C,(<P,n>) = D,  + p [D, + (fin - n + 

The function E,,(< . ,n>) appears in 

+ (1 - p*(0))eF + E,(<O,n>)]. (6) 

the definition of both C,(<.,n>) and Cm(<.,n>). Since it 

describes optimal decision policy costs after step n+l, it is stated in terms of V(< . ,n+l>). E,(< ,n>) 

is a function expressing expected values, taken with respect to the probability of reporting potential 

gain at step n+l. Given pn = p ,  pn+l will be equal to p"@) if the mechanism at step n+l reports poten- 

tial gain, this will occur with probability qc(p). Similar observations apply in the event that no change 

is observed. Thus we see that 

Ev(<p, m) = qC(p)V(<PC(p),n+l>) + qF@)V(<PT@),n+ 1 >). 

Now the principle of optimality states that 

and that the optimal decision at step n given p n  = p is the decision whose cost function minimizes the 

right hand side of the equation above. Cm(<.,n>) and C,(<-,n>) are both functions of V(< . ,n+l>); to 

determine the optimal decision policy we need to solve equations recursing on n. Since the number of 

decision steps is bounded above by M, we can start the solution procedure by defining 



-11- 

V(<p,M+l>) = 0 for all p E [0,1], and then determine V(<p,M>) for all p E [0, 11. An algorithm for 

computing V(< ,n>) in terms of V(< . ,n+l>) is given in the Appendix. The following section shows 

that V(< ,n>) has a useful structure, and that the optimal decision from state <p,n> is nicely character- 

ized. 

3. Optimal Decision Policy Thresholds 

We have noted that the value of the gain probability is a key factor in our decision process. In 

this section we show that the optimal decision policy is a threshold policy: for every decision step n 

there is a threshold X,E [0,1] such that the optimal decision in state <p,n> is to remap if p > x,,, and 

retain if p I x,. We then show why exact calculation of the thresholds { x,,} is computationally intract- 

able, report on the computational complexity of an approximation technique having bounded error, and 

graphically illustrate the behavior of the ( IC,,) as a function of n. 

The following lemma provides the fundamental reasons for the optimal policy structure. Its proof 

is somewhat lengthy, and is given in the Appendix. 

LEMMA 1 : 
For all n, C,(<p,n>) is a linear function of p ;  
For all n, C,(<p,n>) is a piecewise linear concave function of p ;  
There exists no€ [O,-] such that for all n 2 no, C,(<p,n>) I C,(<p,n>) for all PE [0,1]; 
If n < no, C,(<l,n>) I C,(<l,n>). 

Consider the implications of Lemma 1. For any step n 1 no, the retain decision cost function is 

always less than the remap decision cost function, implying that we should retain regardless of the 

value of the gain probability. In this case, the optimal decision threshold is degenerate, p,, = 1. For 

n < no we know that the linear remapping function is less than the concave retain function at p = 1.  It 

is therefore geometrically impossible for C,(<.,n>)’s functional curve to intersect C,(<.,n>)’s functional 

curve ZcjZ thii cjiice, 2s iUiiStiimd by fig-dre I. If q:.,,?:) 2!x.! C,(<.,“?> intersect at IC,, < l i  fieri 
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C,(<p,n>) is less than C,(<p,n>) for p E [O,x,], and C, (q ,n>)  is less than C , ( q , n > )  for p E [IC,,ll. 

It follows that the optimal decision from state <p,n> is to retain if p I IC,, and to remap if p > IC,. We 

summarize this result: 

THEOREM 1 : For every step n, there exists a IC, such that the optimal decision from <p,n> is to 
remap if and only if p > IC,. 

0 

If all the decision model parameters are known, then in theory we can solve the equations 

describing V(<p,n>) and determine each optimal threshold. In practice there are significant obstacles to 

this procedure. We may not be able to quantify the model parameters; we defer this problem to section 

4. A computational problem arises from the fact that the optimal cost functions V(< . ,n>) are all 

piece-wise linear. If a piece-wise linear function changes its linear description at domain point d, we 

will call d a transition point. For any piece-wise linear function g on [0, 11, let D(g) be the set of g's 

transition points. In [14] we show that 

D(C,(< . ,n-b)) = [ q  2 0 I pc(q) = d or p'(q) = d for some d E D(V(< . w)}.  
This means that every transition point for V(< - ,n>) can give rise to two distinct transition points for 

Cf(< ,n-l>). Any of these transition points greater than IC,~ will not appear in D(V(< . ,n-l>)); 

nevertheless, we see that the number of line segments defining V(< ,n>) essentially doubles at every 

step of the recursive solution. Then in general, an exact solution is not computationally feasible. How- 

ever, in the Appendix we describe an approximation procedure which estimates V(< . ,n>) to any 

desired degree of accuracy. Furthermore, at every step this procedure is linear in the number of transi- 

tion points, and over a broad class of approximations, it minimizes the number of transition points 

required to achieve the desired accuracy. Our computational experience with this approximation shows 

that it is quite robust. With the scale of parameter values we used, generally fewer than 200 transition 

points in the approximation bounded the error in approximating V(c  . ,n>) for each n by lo-? 
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Figure 2 illustrates the behavior of the optimal thresholds for four different sets of parameter 

values. For computational simplicity, the number of cycles in the computation was assumed to be con- 

stant rather than random. In our experience, we have always seen the tendency for the optimal thres- 

holds to remain relatively constant, except for n nearest N. Note also that as the per cycle gain 

G = eB - eR increases (for fixed costs D), the converged value of the optimal threshold decreases. 

Intuitively this is true because the smaller the gain from remapping is, the more certain we should be 

that gain is possible before choosing remapping and suffering the attendant overhead. Another ten- 

dency is that the region where n, = 1 increases as the remapping overhead costs D = DT + D, increase. 

This too makes sense, because the expected overall remapping gain depends on the expected remaining 

length of the computation. If this is small, then a large remapping overhead may not be amortized, 

and it is better to simply suffer the “bad cycle times eB until termination. 

4. Model Sensitivity 

Calculation of the the optimal decision policy requires quantification of the model parameters. 

However, some of these parameters may be difficult to estimate at run-time. For example, it is unrea- 

sonable to assume that we can accurately predict the post-gain cycle execution time means eR and eB. 

Because of this problem, we examined the deviation of run-time performance from optimal perfor- 

mance if remapping is chosen whenever p ,  > p, for some fixed p. This class of heuristics is suggested 

by the behavior of the optimal thresholds, as illustrated by figure 2: for most n, n, is relatively con- 

stant for most of the computation’s steps. Our experiments varied p between 0.05 and 0.95. This sec- 

tion reports the results of that study. We find that over a wide range of model parameter values, nearly 

optimal performance is achieved if p is chosen to be high, but not excessively so (e.g. p E [0.7, 0.83). 

From th is  data we conclude that the estimation of remapping msts and gains is not as critical a prob- 

lem as we might otherwise suppose. We then examine the sensitivity of performance when we 

incorrectly calculate the gain probability. We still find that for limited degrees of inaccuracy in our 
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estimates of a, p, and 4, nearly optimal performance can be achieved. From this data we conclude that 

the critical issue in the remapping decision problem is to be able to determine when some kind of gain 

might be possible by remapping. Finally, we note that the decision heuristic extends in a natural way 
~ 

to computations with potentially more than two phases, and see again that the heuristic is effective. 

Our empirical study used a simulation of the analytic model we have already discussed. For 

every set of model parameters, the optimal decision thresholds were approximated with high accuracy. 

Then for each I p = rn.0.05, rn = 1,2, ..., 19, loo0 simulation runs of the modeled system were per- 

formed, tabulating the run-time achieved under the optimal policy, and the policy which remaps when- 

l ever the gain probability exceeds p. The run-time achieved by never remapping was also tabulated. 

For each parameter set and for both non-optimal policies, the relative difference between the non- 

optimal policy performance and the optimal policy performance was calculated. We graphically 

mapped this relative difference as a function of p. 

In doing a sensitivity study we are confronted with the problem of finding an appropriate collec- 

tion of parameter sets. It is intuitively clear that remapping can be useful only if its gains are not 

I dominated by its costs; we first constrain the space of parameter values by estimating an envelope of 

I parameter values where gains exceed costs. The envelope is calculated as a function of N ,  Q and 

I D = DT + DI as follows. First, we calculate the expected possible gain. The per cycle gain is 

I G = eB - eR; for constant N ,  the expected possible gain is simply 

N 

i= 1 
EG = G.(N - i).Prob[gain first achieved at i} 

~ 

The last step follows from uninteresting algebra which uses the fact that the time of gain distribution is 
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nearly a geometric distribution. Assuming that the remapping overhead consists only of one successful 

remapping test and implementation, the envelope of admissible gain and cost parameters is found by 

equating EG to DT + Df. That is, for any value of G, any remapping cost up to EG is less than the 

expected possible gain. Figure 3 shows the envelope under the assumptions that N = 100, @ = 3/100, 

and eB = 200 (which bounds G from above by 200). We will use these parameter values throughout 

our study; in addition, we assume that DT = D,, and denote D = D, + D,. The dashed lines in figure 3 

identify the subsets of the envelope space where we will choose G and DT + D, for our empirical 

study. These lines fairly well span the space of admissible cost and gain values, and should give us a 

reasonable picture of performance sensitivity throughout the envelope. Note that the dashed lines del- 

ineate the marginal functions of G and D from the three (G, 0) coordinates (50,200), (100,3000), and 

(150,9000). 

N was set to 100 in all of the simulations we report here. This seems reasonable since dynamic 

remapping is a consideration only for relatively long-lived computations, and simulations showed that 

except for small N (N I 10 ), N doesn’t affect the performance measures much. Our studies looked at 

marginal performance with respect to G, to D = DT + Df, and to gain detection accuracy. Essentially, 

we varied these parameters as much as possible through the three interior points identified in figure 3. 

The studies which focused on costs and gains assumed that a = f3 = 0.25. 

Each graph maps the performance of heuristic policies in relation to the optimal policy. A data 

point is generated by 1000 runs of a simulator which calculates the execution time under (1) the 

optimal policy (2) a fixed p-threshold policy, and (3) never remapping, or the NR policy. If the sum 

of execution times for policy h is hcost and the sum of execution times for the optimal policy is ocost, 

then the data point plotted for policy h is (hcost - ocost)/ocost. The independent variable in each of 

these graphs is p. The piece-wise linear curves map the relative difference between the p-threshold 

policy and optimal policy as a function of p. Each strictly horizontal curve plots the relative difference 
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between the NR and optimal policies. 

Figures 4,5, and 6 show the sensitivity to changing G through the envelope coordinates (50,200), 

(100,3000), and (150,9000) respectively. Every p-threshold policy and NR policy curve is marked with 

the G value defining that curve. On each of the graphs we notice that the relative performance of the 

NR policy deviates from the optimal sharply as we increase G. This comes as no surprise, since 

optimal performance is achieved when there is no possible gain by simply never remapping. For every 

fixed value of G, it is also interesting to compare the relative performance of the NR and p-threshold 

policies, by looking for the point of intersection between their respective curves. For example, we find 

no such intersections in figure 4, implying that within the indicated parameter range, any p-threshold 

policy will yield better performance than the NR policy. This is not the case in figures 5 and 6 where 

remapping costs are much higher. There we have marked the point of intersection for each pair of 

curves associated with a fixed value of G. Every pair of curves shown in figure 5 have a point of inter- 

section, the largest is approximately p = 0.5 and is associated with G = 50. For the range of parameter 

values given by this graph, we see that choosing p > 0.5 leads to performance better than the NR pol- 

icy. The actual performance gain over the NR policy depends strongly on the value of G. Similar con- 

clusions can be drawn from Figure 6. The curves for G = 150 intersect at approximately p = 0.65; for 

any G 1 150 and any p > 0.65, we can outperform the NR policy. On the other hand, the curves for 

G = 100 do not intersect, and the NR policy outperforms every p-threshold policy. Note too that the 

NR policy in this case is nearly optimal, and that the point (100,9000) lies outside of the envelope. 

Overall, the deviation from optimality of the p-threshold policy for high p is generally less than lo%, 

and can be less than 2-3%. 

Figures 7,8 and 9 illustrate the sensitivity to changing D. We can make observations similar to 

those on changing G. As the cost increases, the difference between the optimal policy and the NR pol- 

icy decreases. The points of intersection between policy curves are again marked, and again we see 
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that choosing p > 0.65 leads to performance gains over the NR policy. Once again we see that the per- 

formance of the p-threshold policy for high p deviates only slightly from the performance of the 

optimal policy. Any non-monotonicity in the p-threshold curves are likely due to statistical fluctuation. 

Figures 10, 11, and 12 show the sensitivity to changing gain test accuracy. For simplicity we 

assumed that a = p, and varied these parameters from 0.05 to 0.5. No larger values of these parame- 

ters need be considered, since the information content of a test with e m r  probability p is equal to that 

of a test with error probability 1 - p .  Collectively, these figures show that optimal performance is rela- 

tively less sensitive to gain test accuracy than it is to remapping cost or gain. Figure 10 shows the 

sensitivity at (50,200), where we see that if a 50.4, then every p-threshold policy achieves better per- 

formance than the NR policy. The case where a = 0.5 provides an interesting contrast, where if p is 

too high, then the NR policy is slightly better. This curious effect is understood by realizing that a test 

with 50% failure gives no information at all. The only evidence the model receives for possible gain 

is from the time of gain distribution. A high probability of gain is achieved only at steps near the end 

of the computation; but then the costs of remapping threaten to dominate the gains. This same 

phenomenon is observed when a = 0.5 in figures 1 l b  and 12b. The sensitivity at (100,3000) and 

(150,9OOo) is more easily discerned by considering high accuracy and low accuracy cases separately. 

Figures 1 l a  and 12a show the high accuracy cases. Once again we illustrate the points of policy curve 

intersection, and again we see that simply choosing a relatively high value of p leads to performance 

gains over the NR policy. This is also true for low accuracy values of a at (100,3000) (with the excep 

tion of a = 0.5) shown in figure l lb ,  but is not the case at (150,9OOO). Figure 12b clearly shows that 

at (150,9OOO), low accuracy is bad news. Only in the case of a = 0.3 can we outperform the NR pol- 

icy, and then only marginally. At the envelope boundary we apparently need relatively high accuracy 

gain detection tests (figures 6 and 9 show that a = p = 0.25 is adequate). Again, locally non-monotone 

behavior in the p-threshold curves is likely due to statistical fluctuation. 
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We have so far assumed that the p-threshold heuristic knows the precise values of a, f3 and +. 

Since this is not likely to be true in practise, we examined the effect of using erroneous values for 

these parameters. Figure 13 shows the sensitivity of the p-threshold policy to faulty values of a and 

p. Once again, we calculated the relative difference from optimal performance (when a, p, and + are 
precisely known). The measurements were taken when G = 100, D = 3000, and the true value of 

a = p is 0.25. A curve labeled with scale factorfdenotes the performance achieved when the heuristic 

used f0.25 as a (and p). As before, the horizontal line illustrates the relative performance of the NR 

policy. Figure 13 shows that even if we assume that the gain detection mechanism yields no informa- 

tion (scale factor of 2), that we can outperform the NR policy. It is also clear though that serious 

mis-estimation of a and p leads to significant performance decline. 

Figure 14 looks at the sensitivity to faulty values of 4. The measurements were taken with the 

same parameter values as assumed in figure 13. Again, each curve is labeled with a factor used to 

scale + up or down for the p-threshold heuristic. Here we see that the consequences of over-estimating 

can be quite serious; this arises because a high value of + increases the gain probability, leading to 

an increase in the number of premature remapping decisions. At first glance, it seems counter-intuitive 

that strictly under-estimating + should be better than using an exact value of 4. This phenomenon is 

understood by noting that the p-threshold curve with exact + at envelope point (100,3000) is monotone 

decreasing (at least for p I .95). The net effect of underestimating + is to hamper the increase in gain 

probability after positive gain test results, meaning that more post-gain cycles will occur before the 

gain probability is high enough to exceed the chosen threshold. For exact 0, this same effect is 

obtained by increasing the threshold value. Thus, we may think of the curves obtained by underes- 

timating + as left-moving translations of the exact + curve. Since the exact + curve is monotone 

decreasing, the p-threshold policy which underestimates + will perform better than the p-threshold pol- 

icy which uses an exact value of +. If + is unknown, it appears to be best to adopt a low value of +, 

and let the statistical weight of successive positive gain tests drive the gain probability up. 



-19- 

As a final note, all of the studies we have reported are for the two phase model. It is likely that 

the optimal policy for a multiple (more than 2) phase model will have a threshold structure, but in 

view of the limited utility and added complexity of determining the optimal policy, we will not attempt 

to prove this. We did however compare a p-threshold heuristic with the NR policy on a multi-phase 

model. At every phase change, the model increased the non-remapped cycle execution time by 50 

units, and increased the remapping gain by 25 units. We used p = 0.75, 41 was set to 0.05, N was set 

to 250, and we assumed that a = p = 0.25. The results were quite encouraging. Starting at the 

envelope point (150,9OoO) and eB = 200, the 0.75-threshold policy outperformed the NR policy by a 

relative percentage of 66%. From (100,3000) the 0.75-threshold policy outperformed the NR policy by 

a relative percentage 202%. It is clear then that for multi-phase computations, a simple p-threshold 

policy can significantly improve performance. 

We can draw several important conclusions from our sensitivity study. p-threshold policies work 

quite well when p is relatively high. In these cases, a p-threshold policy will almost always outperform 

the NR policy; furthermore, we can expect its performance to be within a few percentage points of the 

optimal policy. It is clear that we need to be careful about extremely high remapping costs, and inac- 

curate gain detection mechanisms. To protect ourselves from an inaccurate gain detection mechanism 

we can choose p so that it is not too high. Apparently a value of p E [0.7, 0.81 is high enough to pro- 

tect against cost/gain imbalance, and low enough to protect against inaccurate gain detection (be 

warned, however, that this latter protection depends on Q). The most important implication of all this is 

that accurate estimation of per cycle remapping gain G is not necessary, nearly optimal performance 

can be achieved with a fixed threshold policy. We should try to determine whether the relationship 

between the per cycle gain G and remapping costs D allows remapping, but mapping costs can be 

surprising high and still allow remapping gain. For example, the ratio of remapping cost to per cycle 

gain with a gain of 150 and cost of 9000 is 60. In general, the largest permissible such ratio depends 

on N and 4; but with a relatively long computation, and probability of phase change exceeding 1/2, we 
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can expect a high ratio. We have also seen that a certain degree of inaccuracy in estimating a, p and @ 

can be tolerated. This is important, as these parameters too are not likely to be known exactly. Finally, 

we saw that it is reasonable to expect good performance from threshold policies used on computations 

with multiple phase transitions, provided that the phases are relatively long-lived. 

5. Conclusions 

An effective mapping of workload to processors in a parallel processing system must make cer- 

tain assumptions about the computation’s running behavior. The behavior of many computations are 

characterized as a sequence of phases, where behavior within a phase is fairly stable, but the behavior 

between two phases can be quite different. It is therefore possible for a mapping to become ineffective 

when a phase change occurs, so that dynamically remapping the computation may be required to main- 

tain good performance. However the decision to remap must take into account the performance gains 

and costs involved, and must deal with uncertainity in whether remapping leads to gains. We have 

modeled this decision problem with a Markov decision process, and have determined the structure of 

the optimal decision policy. While this is an interesting theoretical result, it is not immediately practi- 

cal. We therefore empirically studied the performance of a simple threshold heuristic which do not 

assume knowledge of remapping’s costs and gains. We found that this heuristic works remarkablely 

well, implying that the remapping decision problem does not require precise estimates of these parame- 

ters. The key issue for the remapping decision problem is thus the relatively accurate assessment of 

when remapping leads to performance gains. 
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Appendix 

In this appendix we prove Lemma 1 from section 3, and discuss an algorithm for approximating 

V(< - ,n>). We first prove Lemma 1. 

Proof of Lemma I 

Some of our analysis conditions on the value of N. We use the notation g(<p,n>W=m) to denote 

the value of function g at state <p,m given that N = m. We will also say that a function g is plcc if it 

is piece-wise linear, continuous, and concave. 

Lemma 1’s first claim is that for every n, C,(<p,m) is a linear function of p. This is easily seen 

from its definition in equation (6); note that E,(<O,n>) does not depend on p. Lemma 1’s second claim 

is that for every n, C,(<p,n>) is a plcc function of p. This result follows primarily from the following 

lemma reported in [ 181 and stated in terms of our notation: 

LEMMA A-1 : Suppose that N=m. If V(<p,n+l>lN=m) is a plcc function of p, then 
E,,(<p,mWw) is a plcc function of p. 
0 

We use this lemma to establish Lemma 1’s second cIaim, by showing that for every fixed n 2 0, 

V(<p,n>) and C,(<p,n>) are plcc functions of p. First condition on N = m for some m. We will induc- 

tively show that V(<p,n>lN=m) and C,(<p,n>lNa) are plcc functions of p. For the base case we con- 

sider n = m. For anyp E [O,l], 

also observe that C,(<p,m>lN=m) is plcc since it is linear. The class of plcc functions is closed under 

the point-wise minimum operation; V(<p~n>lN=m) must also be plcc, establishing the induction base. 
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For the induction hypothesis we suppose that both C,(<p,n+l>W=m) and V(<p,n+l>lN=m) are 

plcc functions of p for some n I m - 1. Lemma A-1, and the closure of plcc functions under addition 

and point-wise minimum again ensure that C,(<p,n>) and V(<p,n>) are plcc functions of p, completing 

the induction. 

To complete the proof, we note that the class of plcc functions is also closed under scalar multi- 

plication, and observe that 

and 

To help establish Lemma 1’s third and fourth claims, we analyze the values of C,,,(<p,n>) and 

C,(<p,n>) at p = 1. Key results are given by Lemma A-2. 

LEMMA A-2 : Either 

(i) V(<l,n>) = C,,,(<l,n>) for a l l  n for which Prob{N = n]&; or 

(ii) V(<l,n>) = C,(<l,n>) for all n for which Prob{N = n]#O; or 

(iii) There exists an no (possibly -) such that for all n < no, V(<l,n>) = C,,,(cl,n>), and for all n 2 q, 

for which Prob{N = n)&, V(<l,n>) = C,(cl,n>). 

PROOF: We condition on N = m, for any 0 Im I M. Let K be the largest integer such that 

(eF - eR)K I DT + DI. Simple algebra (omitted here) establishes the inductive proof that for all n such 

that m - K < n I m, 

V(<l,n>lN=m) = C,(<l,n>W=m) = (m - n + 1)s; 

and that for 0 I n I m - K, 
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and 

C,(<l,n>W=m) = eB + DT + DI + (rn - n)eR. 

Define d(nlN=m) to be the conditional difference C,(<l,n>lN=m) - C,(<l,n>lN=m), and d(n) to be the 

unconditional difference C,(<l,n>) - C,(<l,n>). From the equations above, we see that as a function 

of m, 

DT + DI - (eB - eR).(m - n + 1) for rn < n + K 
{( t?R - eB) for n + K I rn d(nlN=m) = 

It follows from the definition of K that d(nlN=m) is a decreasing function of m. The unconditional 

difference d(n) is obtained by taking the expectation of d(nlN=m) with respect to the residual distribu- 

tion N,, of N given N 2 n. In E201 it is shown that if N has a decreasing failure rate function, then 

E[g(NJ] I E[g(N,,+l)] for all decreasing functions g.  In particular, d(n) I d(n+l), showing that the 

difference C,(<l,n>) - C,(<l,n>) is an increasing function of n. Then case (i) occurs if d(n) is nega- 

tive for all n, case (ii) occurs if d(n) is positive for all n, and case (iii) occurs if d(n) changes sign at 

n = 5. 

These results establish Lemma 1’s fourth claim, that if n < n ~ ,  then C,(<l,n>) 1 C,(<l,n>). Finally, to 

establish its third claim, we will show that C,(<p,n>) is linear in p whenever n 2 5. Since C,,,(<.,n>) is 

always linear, and C,(<O,n>) I C,(<O,n>) for all n, and C,(<l,n>) I C,(<l,n>) when n 1 no, it will 

follow directly that C, and C ,  cannot intersect, so that C,(<p,n>) I C,(<p,n>) for all p E [0, 13. 

LEMMA A-3 : If n 2 no, then C,(<p,n>) is linear in p ,  and V(<p,n>) = C,(<p,n>) for all p E [0,11. 

PROOF: We proceed by induction. M is the largest integer such that Prob{N = M} # 0, so that 

V(<p.M+l>) = 0 for al lp  and 

I 
i 
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I 

Presuming that no 44, we have C,(<l,M>) I Cm(<l,M>) and C,(<o,M>) I C,,,(<o,M>), so that 

V(<p,M>) = C,(<p,M>) = p*(p)eB + ( 1  - p*@))eF, which is linear in p .  The induction base is thus 

satisfied. 

For the induction hypothesis, we suppose there is an n > such that V(<p,n+b)  = ct(<p,n+l>) for all 

p E [0,1], and that C,(cp,n+l>) is linear inp. Equation (5) implies that 

I V(<p,n+l>) = A.p + B 

for some A and B. Equations (2), (3), and (4) show that that pC@) = d&!k@ and that 
qC(P) 

C,(<p,n>> = p*@)eB + (1 - p*@)>eF + ~ p * ( p )  + B 

which is linear in p since p*(p) is linear in p .  Since C,(<p,n>) and C,(<p,n>) cannot intersect it fol- 

ing the induction. 

CalculatinglApproximating V(< ,n>) 

We now discuss an algorithm for calculating or approximating the functions V(< ,n>). The 

I proofs for various properties we claim for this algorithm are detailed in [14].  
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To deal with the fact that N can be random, we will condition on N = m for some m. The pro- 

cedure we describe is then repeated for all m such that Prob(N = m} # 0, and then the conditional 

functions are combined. 

We know that V(< - ,n>W=m) = Cr(< * ,n>W=m) is a linear function for n 2 no. It is a simple 

matter to define V(<pJn+l>lN=m) = 0 for all p, and then determine the slope and intercept of C, and 

C, using equations (5) and (6). Since C,(<O,n>lNV) is less than C,(<O,n>lN=m) for all n, we test for 

an intersection of C, and C,,, by checking to see if C,(<l,n>W=m) > C,(<l,n>W=m). If 

C,(<pJn>lN=m) and C,(<p,m>W=m) do not intersect, we infer that V(<pm>W=m) = C,(<pJn>lNW), 

and calculate the slope and intercepts for C,(< ,m-l>W=m) and C,,,(< . ,m-l>IN=m); again, examin- 

ing the functional values at p = 1 will determine whether intersection has occurred. We repeat this 

process until the two cost cumes intersect. 

Now we assume that V(< ,n>lN=rn) or some approximation to V(< ,n>lN=m) is known. A con- 

venient representation for this function is as an array of records where each record holds a transition 

point, the value of V at that point, and the slope and intercept of the linear segment extending to the 

value of the function at the next greatest transition point. This array is sorted by the transition point 

values. The set of transition points for C,(< ,n-l>IN=m) is found by defining the sets 

SI = ( q  2 0 I pc(q) = d for some d E D(V(< - ,n>))} 
and 

S, = ( q  2 0 Ip'(q) = d for some d E D(V(< ,n>))) 

Since both p"@) and p"@) are increasing functions of p (when a,P S OS), sorted representations of SI 

and S2 are easily obtained by simply choosing the d's for solution in pc(q) = d and p"@) = d in sorted 

order. The ordered lists for SI and S2 are then merged (removing identical entries if necessaryj into a 

sorted list for D(C,(< . ,n-l>W=m)). The function values for C, at these points are then determined by 

equation (6). For any e E D(C,(< . ,n-l>W=m)) the calculation of C,(<e,n-l>IN=m) requires 
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identification of V(<p'(e),n>W=m) and V(<p'(e),n>lN=m). This is efficiently done if we start the C, 

value calculation procedure by first placing a "pC( . )-pointer" and a I)"( . )-pointer" to the head of 

the V(c ,n>W=m) array, and then process the points in D(C,(< . ,n-l>W=m)) in sorted order. To 

determine V(<pc(e),n>Wm) we simply advance the p"( ) pointer until the appropriate linear segment 

of V(c ,n>W=m) is encountered. Since pc@) is increasing in p, the fact that the points in 

D(C,(C ,n-l>IN=m)) are processed in sorted order means that we never have to back the p"( . ) 

pointer up: the search for V(<pC(e),n>,lN=m) can start where the pointer was last left. Similar observa- 

tions hold for the p"( e ) pointer. Since C,(c . ,n-l>W=m) is linear, it is easy to compare 

C,(<e,n-l>W=m) and C,(<e,n-l>IN-) for every C, transition point e. When we encounter the first e 

such that C,,,(ce,n-l>IN=m) c C,(<e,n-l>W=m), we know that C, and C, intersect in the interval 

between e and the greatest transition point less than e. It is then straightforward to calculate the point 

of intersection, so that the complete set of transition points for V(< . ,n-l>IN=m) are defined. The 

slopes and intercepts for each of the V's linear segments are then calculated. Each of the steps out- 

lined above has linear complexity in twice the size of D(V(< . ,n>lN=rn)). 

The procedure outlined so far will calculate the optimal cost function exactly. But because the 

number of transition points essentially double at every step, the computational complexity and storage 

requirements of the algorithm are prohibitive. We next describe a method of constructing an accurate 

approximation to V(c . ,n>lN=rn) which significantly reduces the number of transition points required 

to represent it. We assume that V(< 1 ,n>lN=rn) or an approximation to it is known, and is denoted by 

W. We assume that W is piece-wise linear and concave. We also assume an error tolerance E, and 

desire an approximation to W which bounds the maximal error between W and its approximation, 

which minimizes the number of transition points used to achieve that tolerancei and which remains 

concave. We will restrict ourselves to interior approximations defined as follows. If A is an interior 

approximation to W, then A(e) = W(e) at each of A's transition points, A is piece-wise linear, and 
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A@) I W(p) for all p. If W is concave then A will be concave. Our approximation procedure finds an 

interior approximation to W which minimizes over all interior approximations the number of transition 

points needed to achieve W@) - A@) I E for all p. 

The basic idea of the approximation is to build up its line segments piece by piece. Starting with 

the left most endpoint of the interval @ = 0). the rightmost endpoint of A’s first segment is chosen so 

that the maximal difference between A and W over that interval is exactly E. The chosen endpoint is 

then taken as the left endpoint of the next approximation segment, and again the right endpoint is 

chosen so that the maximal error of the second approximation segment is exactly E. This process is 

repeated until W is completely approximated. The number of transition points chosen using this 

method minimizes the number of transition points needed by an interior approximation to achieve an 

error tolerance of E. Furthermore, the complexity of approximating W by A is linear in the number of 

W’s transition points. We now outline this approximation in more detail. 

Suppose that I is the left endpoint of the interval for A that we are attempting to construct, and 

consider the interior approximation to W consisting of a single linear segment between W(Z) and W(u). 

u > I. To emphasis the right endpoint, we will call this segment the u-segment. The point at which the 

difference between W and the u-segment is maximized over [I, u] is the right hand endpoint associated 

with Ws linear segment having the least slope greater than the u-segment slope, (W(u) - W(l))/(u - 0. 

Furthermore, the maximal error between the u-segment and W over [I, u] is a continuous increasing 

function of u. Thus, given I, we can calculate the maximal error over [I, 41, for any of W’s transition 

points di > I, the di being examined in increasing sorted order. Upon finding the first d, such that the 

maximal error between W and the d,-segment exceeds E, we can calculate the point u’, $-I I u’ I d, 

such that the u’-se-ment’s maximal error over [I, u’] is exactly E, as follows. Let m and b be the slope 

and intercept of the W segment between W(dF1) and W(d,). For u E [dFl,d,] the slope of the u-segment 

is 
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m.u + b - W(2) 
u - 1  

m(u) = 

and its intercept is 

b(u) = W(r) - m(u).I. 
At any point e E [ I ,  u],  the error between W and the u-segment is given by 

Let 

U E  

e(u) be the W transition point 

[dkl ,  d,] e(u) is an increasing 

where e(u) is discontinuous, and u1 

w ( e )  - [m(u).e + b(u)]. (7) 
at which the u-segment’s maximal error over [ I ,  u] occurs. For 

step function; let ul, . . . ,uk be the ordered sequence of points 

= dk1. It will be understood that e(uJ denotes the value of e( * ) 

as uj is approached from the right. Given e(uJ, it is not difficult to identify u~+~. We know that e( . ) 

takes a step up precisely when the slope of the u-segment is equal to the slope of the W segment 

between e(uJ and e(uj+l); since this slope mi is known from W’s description, and it is known that u- 

segment passes through ( I ,  W(r)) regardless of u, it is a simple matter to calculate where a line with 

slope mi which passes through (I, W(2)) will intersect the W segment between W(dkl) and W(d,). The 

point of intersection will be uCtl. 
, 

e(ul) was identified when the interval [dFl, d,] was identified, so that e(u2) is the next larger W 

transition point, and u2 can be identified as outlined above. Now we hypothesize that the u which 

leads to e maximum error is in the interval [d,-1,u2], so that the maximum e m r  occurs at e(ul). Fol- 

lowing expression (7), we solve for u in the equation 

If the solution u’ is less than u2, then we select u’ as the approximation endpoint. Otherwise, we 

hypothesize that the endpoint sought is in the interval [u2, u3], and solve for u in the equation 

e = W(e(u2)) - m(u)-e(uz) + b(u) . 

Again, e(u3) is the next larger transition point from e(u& and if the solution u’ to the equation is less 

than u3 we are done. This process is repeated until the u’ which causes the maximal error over [ I ,  u’] 

[ I 



-29- 

to be exactly E is found. u’ then defines the right endpoint of the A segment under construction. u’ is 

then used as the left endpoint for the next segment, found using this same procedure. Because every 

one of W‘s transition points is scanned at most once in looking for a bounding interval on u’, and at 

most once in narrowing the search for u’ in that bounding interval, the complexity of approximating W 

with A is linear in the number of Ws transition points. 

If W is an approximation to V(< ,n>VV=m) whose error is no larger than 6,  and if Ws approxi- 

mation A has error no larger than E,  then A is an approximation to V(< . ,n>W=m) with error no larger 

than 6 + E. Thus we can bound the error on V(< ,l>IN=m) by E if we construct approximations to 

each V(< - ,n>W=m) with tolerance dm. In practice, we achieve somewhat better accuracy by calling 

upon the approximation technique only when the number of transition points for the working level of 

V(< ,n>lN=m) gets large. The approximation typically reduces the number of transition points 

significantly, allowing us to do an exact mapping until the number of points again grows too large. 

The procedures discussed above initially condition on N = m. We suppose then that 

C,(< . ,n>lN=m) and V(< ,n>W=m) have been calculated or approximated for every m such that 

Prob{N = m) # 0. Combining the conditional functions is relatively straightforward. The transition 

points for C,(c ,to) are found by merging the transition points for each conditional function 

C,(< . ,n>lN=m). Then for every e E D(Ct(c . ,n>)), we calculate the function value 

M 

k l  
C,(<e,n>) = Prob (N = m) C,(<e,n>lN=m). 

Note that if the approximation to C,(<e,n>lN=m) has maximal error of E,  then Prob(N = m) times that 

approximation deviates from the true product Prob(N = m)C,(<e,n>lN=m) by no more than 

EProb{N = m}. It follows that if for every m we approximate C,(<e,n>lN=m) with tolerance E, then the 

sum above has tolerance E. 

Since Cm(< ,n>lN=m) is linear for every rn, C,(< + ,n>) is also liiear, its slope and intercept can 

be found by evaluating Cm(<U,n>) and Cm(<i,n>j as above. Tie  intersection of Cm(c ,n>j aid 
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C,(< - ,n>) can then be determined, and 7t, discovered. 
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